Fluid flow through ramified structures.
نویسندگان
چکیده
We investigate the fluid flow through two-dimensional ramified structures by direct simulation of the Navier-Stokes equations. We show that for trees with n generations, the flow distribution strongly depends on the Reynolds number Re. Specifically, for a tree without loops the flow becomes highly heterogeneous at high Re. For a tree with loops, on the other hand, the flow distribution tends to be more uniform at increased Re conditions. We show that these apparently contradictory behaviors have the same origin, namely, the effect of inertia on the momentum transport in the channels of the ramified geometry. In order to simulate the propagation of the flow imbalance throughout the tree without loops, we develop a simple model that incorporates the basic fluid dynamics features of the system. For large trees, the results of the model indicate that the distribution of flow at the outlet branches can be described by a self-affine landscape. Finally, we argue that the nonuniform partitioning of flow found for the structure without loops may contribute to the morphogenesis and functioning of the bronchial tree.
منابع مشابه
Nonlinear Analysis of Flow-induced Vibration in Fluid-conveying Structures using Differential Transformation Method with Cosine-Aftertreatment Technique
In this work, analytical solutions are provided to the nonlinear equations arising in thermal and flow-induced vibration in fluid-conveying structures using Galerkin-differential transformation method with cosine aftertreatment technique. From the analysis, it was established that increase of the length and aspect ratio of the fluid-conveying structures result in decrease the nonlinear vibratio...
متن کاملExperimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media
The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...
متن کاملInfluence of an external magnetic field on the peristaltic flow of a couple stress fluid through a porous medium.
Magnetohydrodynamic(MHD) peristaltic flow of a Couple Stress Fluid through a permeable channel is examined in this investigation. The flow analysis is performed in the presence of an External Magnetic Field. Long wavelength and low Reynolds number approach is implemented. Mathematical expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional f...
متن کاملMHD Casson fluid flow through a vertical plate
In this study, effects of numerous physical quantities like dissipation, thermal radiation, and induced magnetic field on magnetohydrodynamic Casson fluid flow through a vertical plate is addressed. The non-dimensional multivariable governing equations are solved numerically by by means of Runge-Kutta method along with shooting technique. The behavior of velocity, temperature and induced magnet...
متن کاملNumerical Modeling of Two-Layered Micropolar Fluid Through an Normal and Stenosed Artery
In the present work a two fluid model for blood flow through abnormally constrictedhuman artery (stenosed artery) has been developed. The model consists of a core region of suspensionof all erythrocytes assumed to be micro-polar fluid so as to include the micro-structural effects inaddition to the peripheral-layer viscosity effects, and a peripheral plasma layer free from cells of anykind of Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 60 5 Pt A شماره
صفحات -
تاریخ انتشار 1999